Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Clean Prod ; 358: 131903, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1819523

ABSTRACT

The disposal of medical waste has become an increasing environmental issue since the COVID-19 epidemic outbreaks. Conventional disposal methods have produced waste of fossil resources and environmental problems. In this study, the waste medical mask-derived materials were tested as viscosity reducer and pour point depressant to evaluate the possibility of being used as crude oil fluidity improver. The results show that the materials derived from the three parts of the waste medical mask can reduce the viscosity and pour point of each crude oil samples from different oilfields in China. The middle layer of the medical mask (PP-2) displays the highest efficiency, and the viscosity reduction rate and maximum pour point reduction reaches 81% and 8.3 °C at 500 ppm, respectively. A probable mechanism of improving rheological properties of the crude oil samples by the medical mask-derived materials was further proposed after the differential scanning calorimetry (DSC) analysis and the wax crystal morphology analysis. We hope this work could provide a way to solve the current environmental issues under COVID-19.

2.
Geohealth ; 5(5): e2021GH000408, 2021 May.
Article in English | MEDLINE | ID: covidwho-1233689

ABSTRACT

The human movement and economic activities have been drastically reduced due to the Coronavirus Disease 2019 (COVID-19) outbreak, leading to the sharp decreases of pollutant emissions and remarkable air quality improvement. Nevertheless, however, the changes of gaseous pollutant concentrations and health effects across China during the COVID-19 lockdown period remained poorly understood. Here, a random forest model was applied to assess the impact of COVID-19 lockdown on pollutant concentrations and potential health effects. The results suggested that estimated NO2, SO2, and CO concentrations in China during January 23-March 31, 2020 decreased by 13.68%, 25.71%, and 7.42%, respectively compared with the same periods in 2018-2019. Nonetheless, the predicted 8-h O3 concentrations across China suffered from 1.29% increases during this period. The avoided premature all-cause, cardiovascular disease (CVD), respiratory disease (RD), and chronic obstructive pulmonary disease (COPD) mortalities induced by NO2 decrease during COVID-19 lockdown period reached 3,954 (3,076-4,832), 635 (468-801), 612 (459-765), and 920 (653-1,186) cases. However, the increases of all-cause, CVD, RD, and COPD mortalities due to O3 increase during COVID-19 lockdown period achieved 462 (250-674), 79 (29-129), 40 (-25-105), and 52 (-34-138) cases. The natural experiment demonstrated the drastic emission reduction measures could significantly decrease the NO2, SO2, and CO concentrations, while they significantly elevated the O3 concentration. It is highly imperative to propose more coordinated air pollution control strategies to control O3 pollution.

SELECTION OF CITATIONS
SEARCH DETAIL